ENCYCLOPEDIA OF
COMPUTER SCIENCE
AND TECHNOLOGY

EXECUTIVE EDITORS
Allen Kent James G. Williams

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PENNSYLVANIA

ADMINISTRATIVE EDITORS
Carolyn M. Hall Rosalind Kent

PITTSBURGH. PENNSYLVANIA

VOLUME 28
SUPPLEMENT 13

MARCEL DEKKER, INC. NEW YORK ¢ BASEL - HONG KONG

Copyright © 1993 by Marcel Dekker, Inc.

COPYRIGHT © 1993 BY MARCEL DEKKER, INC.
ALL RIGHTS RESERVED

Neither this book nor any part may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming,
and recording, or by any information storage and
retrieval system, without permission in writing from
the publisher.

MARCEL DEKKER, INC.
270 Madison Avenue, New York, New York 10016

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 74-29436
ISBN: 0-8247-2281-7

Current Printing (last digit)
10 9 8 7 6 5 4 3 2 1

PRINTED IN UNITED STATES OF AMERICA

LARGE-SCALE NUMERICAL OPTIMIZATION: INTRODUCTION
AND OVERVIEW

INTRODUCTION

Large-scale optimization is concerned with the minimization (or maximization) of func-
tions of large numbers of variables. Additional algebraic constraints may be imposed on
some of the variables, or combinations of variables, in which case we are dealing with
constrained optimization. It is difficult to give a precise definition of ‘‘large-scale’’: how-
ever, a pragmatic view is that a problem should be viewed as ‘‘large-scale,”” in a given
computing environment, if it is economical to exploit structure. Structure can refer to
sparsity (i.e., presence of many zeros in the various matrices), inherent parallelism, sep-
arability characteristics, and so on.

The purpose of this article is to give a personal introductory overview of the field,
emphasizing methods, techniques, and practical concerns. We give theoretical issues a
very brief treatment in this article. This is not meant to imply that theoretical issues are
not important; indeed, every successful optimization method is supported, in part, by
strong theoretical underpinnings. However, in the interest of brevity and breadth, we
place theory in the background and instead highlight numerical and practical issues re-
lated to efficient computer implementation.

Research activity in the field is high; we hope this article will introduce the reader
to some of the issues and trends. More details can be found in the proceedings of a recent
workshop on this area (1). Some of the ideas are discussed at greater length elsewhere
(2); background in optimization can be found in a number of optimization texts (3-7).
Recent research developments are discussed in Fletcher (8) as well as in the handbook
edited by Nemhauser, Rinnooy Kan, and Todd (9). Some parallel computing issues in
optimization are discussed in other sources (10, 11).

The unconstrained minimization problem is usually stated as min,f{x), where fis a
real-valued function of n real variables x = (x, X, . . . , x,)". In this article we are
primarily concerned with the case where f is smooth and differentiable® (usually twice
continuously differentiable); however, many important large-scale optimization problems
arise which do not satisfy these assumptions. For example, in some cases some of the
variables (perhaps all) must attain integral values. Typically this makes the problem more
difficult to solve and usually very costly. Wu (13) provides an example of such a problem
and a parallel method of solution. Even without integrality constraints the general prob-
lem, minimize f(x), can be very difficult to solve, especially if the global minimizer is

Copyright © Thomas F. Coleman, 1992. All rights reserved.

*We assume that the gradient of f, Vf, can be computed. There are methods available that do not require the
gradient (e.g., 12), but we do not discuss such methods here.

167

168 Large-Scale Numerical Optimization

Ezample 1 [14,15).

This problem arises in several application areas including molecular chemistry, surveying,
and satellite ranging. We will describe the problem in the parlance of molecular chemistry. It
is required to locate, in 3-space, the positions of the atoms of a molecule given (incomplete)
pairwise distance data. That is, let S be the set of index pairs corresponding to known
distances, i.e., (#,7) € S if the distance between atom i and atom j, d;j, is known. The
cardinality of the set S, |S]|, is usually much smaller than the number of all possible pairs,
ie., |S| << ﬂ";—l)— The problem is to locate all atoms z;, i = 1,2,...,,n, in 3-space such

that ||z; — z;]| = d;j for all (i,j) € S. The dimension of the problem, n, is typically
between several hundred to several thousand. The usual optimization formulation is
(1) min f(z) =) (llai - =l -)"

(i.j)es

FIGURE 1 The distance conformation problem.

required (i.e., a point x. satisfying f{x.) = fix), over all x). The distance conformation
problem, in Example 1 (Fig. 1) is an example of such a problem.

There are several things to note about this problem. First, a point x is a global so-
lution if and only if fAx) = O; therefore, verifying® if a candidate solution is in fact a
global solution is easy—this is not always the case in global optimization. Second, it is

. : . - (n=1)
easy to see that the Hessian matrix, V?f(x), will be a sparse matrix if | §| << - "2 :

variable x; is related to variable x; if and only if (i, j) € S. The problem as stated actually
yields a singular Hessian matrix, at any point—consider, for example, simple translations
or rotations. Singular matrices can lead to numerical difficulties; however, in this case it
is possible to overcome this difficulty by introducing a few simple constraints (to orient
the molecule, arbitrarily, in space).

Notice that to satisfy the known information a global minimizer of (1) is required.
However, locating a global minimizer of (1) is, in general, almost intractable. Indeed,
even if it is known that the molecule is a one-dimensional structure (i.e., all the atoms
form a single straight line), a very unlikely and simplified situation, the global minimi-
zation of (1) is still essentially intractable, in general. Hendrickson (15) shows that this
one-dimensional problem is at least as hard as the ‘‘partition problem’’ which is known
to be NP-complete (see Ref. 16 for an introduction to the theory of NP-completeness).

We are not concerned with global optimization techniques in this article. Cur-
rently, there is a lot of research activity in this area including development of parallel
computational techniques (e.g., 17-20). It is a very important area. However, due to the
extreme difficulty of this problem, it appears that domain-specific heuristics usually play
an important role in the design of efficient computational techniques for large-scale glo-
bal optimization problems.

We are primarily concerned with local minimization. In the unconstrained case
this means finding a point x. with the property that there is a neighborhood containing x.
such that f attains its lowest value, in this neighborhood, at x.. More formally, we say that

*However, in practice the ‘‘known’’ distances may be contaminated with error in which case it may not be
possible to realize fix) = 0, for any x. This gives more credence to the optimization formulation (1).

Large-Scale Numerical Optimization 169

Ezample 2 [22,23,24,25]. In this example one is interested in determining the distribution of
radioactivity across a body cross-section. If a grid is placed across the body cross-section,
dividing the cross-section into a number of squares, the quantity to be estimated is the
level of radioactivity in each square, say z; in square (or pixel) i. Assume the grid divides
the cross-section into n pixels. To yield useful results, n must be very large — typically in
the range (10,000 — 100,000]. So z = (z;,%2,...,2,)7 is the vector to be determined.
However, the quantity that can be measured experimentally is the level of activity along
a number of straight lines that cut across the grid. Let there be m lines I; each with
measured radioactivity level y;. Partition I; = (I;1,1;2, ..., ;)T where l;; denotes the length
of intersection of the i-th line with the j-th pixel. It is proposed {25] to solve the following
optimization problem to determine the vector z:

@) min{f(z) = 275z + 3°(Fz - yi-In(i72): 2> 0)

=1

where S is a sparse symmetric positive semidefinite matrix (defined in Ref. [25]).

FIGURE 2 Image reconstruction.

x. is a local minimizer if there exists a scalar & > 0 such that fix.) < fix) for all x sat-
isfying ||x — x.|| < &. Most optimization problems in science and engineering are ad-
equately solved by local minimization. Moreover, global optimization problems are
usually solved using a local minimization procedure as a subroutine, (e.g., 18,19,21).

The application areas where optimization is used are too numerous to enumerate;
indeed, it is difficult to think of a significant branch of computational science where op-
timization is absent. Moreover, realistic models often lead to large-scale problems. To
illustrate further, we consider two more examples, both from the biomedical research
area. Both examples are merely sketched here to illustrate the nature of the optimization
problem and its relationship to the application—to fully understand the derivation of the
optimization problem the reader must refer to the sources cited.

Important things to note about Example 2 (Fig. 2) are: the objective function is
nonlinear, there are lower bounds on the variables, the matrix S is large, very sparse, and
with some block-structure (sparsity and block structure are both consequences of the grid
design and *‘nearest-neighbor relationships’’).

A few things to note about Example 3 (Fig. 3): First, an evaluation of the objective
function is very expensive—requiring a finite-element analysis, namely, the determina-
tion of the matrix K and the solution of (4). The calculation of the gradient (and even the
Hessian matrix, if required) is possible and is not inordinately expensive provided it is
done, with care, along with the finite-element analysis. If insufficient care is taken with
the manner in which the function is evaluated the entire process will be unmanageably
expensive. Sparse matrix technology will be required for the solution of y; unfortunately,
it will not be required for computations involving the Hessian matrix—the Hessian ma-
trix is dense. The reason for this is that each component of y typical depends on all the
variables x, through Eq. (4).

This third example differs from the previous two in that sparsity and structure do
not show up in the Hessian matrix, which is dense. Instead, sparsity and structure play an

170 Large-Scale Numerical Optimization

Ezample 8 [26,27). Broadly speaking this example falls into the subclass of optimization
known as structural optimization. This type of problem arises when modelling structures of
various kinds and is characterized by an objective function - the function to be minimized
— of both dependent and independent variables. The dependent variables are themselves
functions of the independent variables and can be determined only through the numerical
solution to a system of partial differential equations. In this particular example of a struc-
tural optimization problem, the optimization process predicts how bone will “reconstruct”
itself from a given starting position. The independent variables typically are bone density,
bone thickness, and shape parameters. The objective function f is usually a combination
of mass and strain energy. Before discretization the optimization problem is:

3) min {f(y(z),2): 1<z <u),

where f is a function combining mass and strain energy, and I/,u are given vectors of
lower and upper bounds respectively. The vector z represents the independent variables.
The dependent variable y depends on z through a system of partial differential equations.
Typically this problem is solved by first discretizing, dividing the bone to be modelled into
a large number of “elements”, and choosing finite vectors y and z. So, y = y(z), and y is
usually determined numerically, given z, by using finite element analysis. Amongst other
things this involves forming and solving a very large sparse and positive-definite linear
system of equations:

(4) K(z)y = F(z)

where K(z), the “global stiffness” matrix, is positive definite for all z, and F is a vector-
valued function.

FIGURE 3 The modelling of bone reconstruction.

important role in the evaluation of the function (and derivatives) and cannot be ignored
here. Still, even with full attention paid to efficient function evaluations, the time spent
to evaluate f (and derivatives) at a given point dominates all else. This fact—the extreme
expense of evaluating the function—should play a determining role in the choice of op-
timization algorithm.

Many efficient and reliable algorithms have been developed for small-scale and
medium-scale optimization: why are they not applicable to problems with many vari-
ables? The short answer is that they ignore structure usually present in large-scale prob-
lems; therefore, they are not as efficient as they need to be to solve such problems in
reasonable time. For example, methods that by their nature cannot easily exploit sparsity
cannot be applied to large-scale and sparse problems—computing time would be unman-
ageable. More subtly, perhaps, methods that consist of a large number of inexpensive but
sequential or serial ‘‘major’’ iterations may be inappropriate for a large-scale problem in
a parallel computing environment. (The major iterations cannot be overlapped; there is
not enough work within each iteration to ‘‘crank up’’ a parallel supercomputer.) In this
case, algorithms with fewer but more expensive major iterations may be much more suit-
able provided the computations within these major iterations can be done efficiently in
parallel. As a final example, large-scale problems often consist of a sum of functions of
simple form—second derivatives can often be obtained at relatively little extra expense

Large-Scale Numerical Optimization 171

beyond evaluation of the function and the gradient (and parallelism can be used). There-
fore, an efficient approach to a large-scale problem may involve the calculation and use
of second derivatives whereas this is usually not the case in the small-scale setting.

However, despite this apparent need for different approaches when optimization
problems become large, it is important to realize there there is a common backbone to
methods for large-scale and small-scale optimization. This is the Newton iteration. Prac-
tically all of optimization consists of variations on the Newton process: globalization
strategies, approximation techniques, and efficient robust implementations.

UNCONSTRAINED MINIMIZATION

The problem is: minimize f(x), where fis a twice continuously differentiable real-valued
function of n real variables x = (x, x,, . . . , x,)7. We are interested in locating a local
minimizer: i.e., find a point x. such that there exists a scalar & > 0 with the property that
fix.) = f(x) for all x satisfying ||x — x.|| > &.

There are two basic globalization strategies in unconstrained minimization: line
search methods and trust-region methods. (By globalization strategy we refer to a method
to ensure convergence to a local minimizer from a distant point. We do not refer to a
method to find the global minimizer.)

In a line search method a direction of descent is determined, in other words, a di-
rection s is determined satisfying Vfix,)"s < 0, where x, is the current point (i.e., the
current approximation to the solution). Then, a one-dimensional approximate minimiza-
tion is performed on the function f(x. + as), for a > 0, to determine an acceptable a.
Dennis and Schnabel (3) discuss this issue at fair length; in general, the current consensus
is to terminate the line search process under fairly lenient conditions, and in each iter-
ation to initially try a = 1.

An alternative to a line search algorithm is a trust-region procedure. In this case a
trial step s. is determined by minimizing the local quadratic model of f, at x.., subject to
a restriction on the size of the solution, and possibly subject to s being in some specified
subspace S:

min 1
ses{Vﬂxc)Ts + 55THes: ||s]| = Ac}. 5)

The matrix H. is the current Hessian matrix V>f(x_), or an approximation to it. In the
full-blown trust-region problem S is the entire space R"”. However, in some recent and
very promising work (mentioned in greater detail below) S is a two-dimensional sub-
space. The norm used in the constraint is usually the 2-norm; however, both the 1-norm
and the c-norm have also been advocated. The solution to (5), s«, is accepted and x is
updated, x = x. + s«, if fix, + 5.) < fix,). The trust region bound A, is adjusted for the
next iteration, according to various simple rules (e.g., 5,28,29), and the process
iterates.

Which approach should one use, line search or trust-region? Which is better for
large-scale optimization?

There is a place for both approaches in large-scale optimization. The line search
strategy is clearly appropriate if a positive definite approximation to the true Hessian is
being used (e.g., a quasi-Newton or secant method). A problem with special structure

172 Large-Scale Numerical Optimization

may also be appropriate for a line search method since a specialized line search procedure
to exploit this structure may be possible—this is much harder to do in a trust-region
approach.

A trust-region method is better suited to handle indefiniteness* and is most rea-
sonable when the true Hessian (or an accurate approximation) is being used. Conver-
gence properties are stronger for trust-region methods and they tend to outperform line
search methods on difficult problems (e.g., problems that are very nonlinear with a lot of
negative curvature). The mark against trust-region methods has been their linear algebra
cost (and complexity) within each major iteration—experience suggests almost two
Cholesky factorizations, on average, per iteration. However, Byrd and Schnabel (30) pro-
pose choosing S to be a two-dimensional subspace in which case the cost of the trust-
region problem, once S is formed, is negligible (see also Ref. 31). The trick is how to
choose S. Byrd and Schnabel (30) suggest to let S be the space spanned by the gradient
and the Newton direction, if the Hessian is positive definite, and the space spanned by the
gradient and a direction of negative curvature' otherwise. A negative curvature direction
can be obtained using an ‘‘incomplete’’ Cholesky factorization and perhaps some further
low-order computations. This approach is still in its early stages but seems most prom-
ising. Indeed, a combination of this reduced trust-region approach followed by a line
search may capture the best of both worlds—this is a research question currently under
investigation by the author.

In any event, trust-region or line search, it is important to obtain or approximate
second-order information (i.e., the Hessian matrix) to get acceptable convergence
properties. As we illustrate below, it is often reasonable in the large-scale setting to
obtain analytic expressions for the second derivatives (see also the section on Auto-
matic Differentiation). The extra computational cost beyond the cost of evaluating the
function and the gradient is often acceptable—and the decrease in the number of itera-
tions (over an approach that approximates the second derivatives) may be significant.
However, an efficient Hessian computation can usually be computed only if intermediate
quantities used in the evaluation of the function and the gradient are ‘‘reused.”” There-
fore, the common practice of writing separate subroutines to evaluate the function, gra-
dient, and the Hessian is not a good one in this context (Figure 4 illustrates the use of a
single subroutine to evaluate f{x), Vf(x), and Vzﬂx) for the distance conformation
problem).

Of course it is not always possible, desirable, or convenient to compute second
derivatives. For example, the user may have had a function and gradient routine
handed down (from generation to generation) and that’s where he or she wants to begin,
rather than returning to first principles. It may be the case that the problem is so large
that even with sparsity it is not feasible to form and store the Hessian matrix—in
this case, as we discuss briefly below, ‘‘product-form’’ approximations may be useful.
In summary, there is a need for Hessian approximations and that’s what we discuss
next. Initially we focus on techniques that require storage of a sparse matrix; we

follow this with a short discussion on possible alternatives suitable for very large
problems.

*Note that H_ need not be positive-definite in (5).

"The vector s is a direction of negative curvature, with respect to a Hessian matrix H, if s"Hs < 0.

Large-Scale Numerical Optimization 173

Sparse Secant Updates

One of the biggest success stories in optimization has been the development of quasi-
Newton (or secant) methods for unconstrained minimization. Dennis and Schnabel (3)
provide an excellent introduction to this area; the classic theoretical reference is Dennis
and Moré (32). Unfortunately, the adaptation of this approach to the large-scale case, in
which sparsity is a factor, has been less successful. (A possible exception is the use of
secant updates in the context of a function f that is conveniently expressed in a partial
separable manner—see below for more details.)

A secant method for multidimensional minimization requires that the user simply
supply subroutines to evaluate f and the gradient of f, Vf, at any given point x. An ap-
proximation H(x) to the symmetric Hessian matrix, sz(x), is maintained and updated at
each iteration. The update requires the two pairs (x., x,), (Vfix)), Vfix,)), and the cur-
rent symmetric positive definite approximation H,.. The more successful updates require
that the new approximation H , satisfy what is known as the secant (or quasi-Newton)
equation:

Hi(x+ — x0) = VAxy) — VAx,).

The best updates also require that the approximation H . be positive-definite (and sym-
metric) and this can be ensured provided H.. is positive-definite and

sT(VAxy) — VAx)) > 0, 0)

where x, — x. = os for some positive scalar a. A key point is this: condition (7) is
consistent with approximate minimization of the function f along the line s starting at
point x,.. This is crucial because it means that with an appropriate one-dimensional line
search it is possible to obtain good decrease in the objective function f as well as ensure
that a Hessian update (preserving the quasi-Newton Eq. (6), positive-definiteness, and
symmetry) can be performed.

Many updating formulae have been suggested; however, the most successful to date
(empirically) has been the BFGS (Broyden-Fletcher-Goldfarb-Shanno) update (see, e.g.,
Chap. 9 in Ref 3. The updated matrix H . is obtained from the current approximation,
H_, with a rank-2 update. (Alternatively, an update to a matrix approximating the inverse
of the Hessian can be performed.) A computational attraction of this positive definite
secant update is the low linear algebra cost to perform the update: the work is own?),
which includes the time to compute the next search direction. This is obviously true if the
inverse approximation is updated; achieving this bound with a numerically stable update
to the Cholesky factors of the Hessian approximation is illustrated by others (3,7).

Unfortunately this success story does not carry over to the sparse setting. In the
large-scale situation it is often the case that the Hessian matrix is sparse: i.e., most of the
entries are zero for all values of x [Examples 1 (Fig. 1) and 2 (Fig. 2) illustrate this].
Typically, the sparsity pattern is either known or can be determined before the optimi-
zation process begins. Therefore, a worthwhile goal is to maintain an approximating ma-
trix with the same sparsity pattern, allowing zeros to turn into nonzeros can dramatically
increase computational costs to the extent that the overall expense of a single iteration is
prohibitive. Unfortunately, the quest for a sparse, symmetric, positive-definite secant
method has produced a grab-bag of heuristic techniques and strategies (e.g., 33-39),
none of which possess the satisfying theoretical and computational underpinnings of the

174 Large-Scale Numerical Optimization

dense positive-definite secant updates suitable for small-scale problems. Coleman (2)
summarizes this effort.

Sparse Finite Differences

Frustrations with the development of a successful sparse secant update has led to a search
for alternatives and the generation of rather successful sparsity exploiting finite-
differencing schemes.

To introduce this subject it is easiest to begin with the sparse finite-difference es-
timation of an unsymmetric Jacobian matrix. This arises in the common situation when
trying to minimize a nonlinear least-squares function,

min £(z) = 2FGOTF) ®

where F(x) is a vector-valued function: F(x) = (f,(x), ,(x), . . ., f,,,(x))T and each com-
ponent function f(x) is a real-valued function of the vector x € R". Typically m > n.
Hence, the function F(x) maps R"—R"™ and has an m-by-n Jacobian matrix J(x) = F'(x).
Our objective is to estimate J(x) using a subroutine to evaluate F(x). By Taylor’s theorem,

J)d = F(x + 'yc'iy) — F(x))

+ 0(v) 9)

where vy, the step size, is a positive quantity and d is an arbitrary vector of unit length.
Therefore an approximation to the i-th column of the Jacobian matrix can be obtained
with a subroutine to evaluate F, by choosing d = ¢’ where ¢’ is the i-th column of the
identity matrix. Clearly it is possible to obtain an approximation to the Jacobian matrix,
at the current point x_, using n + 1 function evaluations by estimating each column of
J in turn.

Curtis, Powell, and Reid (40) were the first to point out that many fewer function
evaluations may be enough to estimate a sparse matrix. For example, a tridiagonal matrix
requires only three finite-differences. The general idea is to partition the columns of the
Jacobian matrix J into groups of ‘‘structurally independent’’ columns. Two columns
are structurally independent if their row indices corresponding to nonzeros are disjoint.
Coleman and Moré (41,42) proposed graph-coloring heuristics to determine partitions
with groups—each group corresponding to a function evaluation and a finite difference.
The practical performance of this approach seems quite satisfactory requiring very few
finite-differences (relative to n) on practical problems (41). Nevertheless, there is room
for possible improvement in the situation when there are a few dense rows: the number
of required finite-differences is bounded below by the maximum number of nonzeros in
any row. In such a case what may be required is independent approximation of the dense
rows (perhaps a secant approximation).

In the more general minimization context, min,f{(x), we are required to estimate the
sparse matrix of second derivatives (the Hessian matrix) given a subroutine to evaluate
fix). The unsymmetric approaches, described above, can be used here; however, usually
it is better to use a method that also exploits the symmetry of the Hessian matrix. Ap-
propriate column partitionings, allowing for the use of symmetry, are provided by var-
ious graph colorings (43—45) and once again the practical performance of this approach
seems to be quite good, requiring few finite-differences relative to n, and taking near
optimal advantage of symmetry.

Large-Scale Numerical Optimization 175

In summary, the sparse finite-difference approach, given a subroutine to evaluate
Vfix) in the general minimization case, and given a subroutine to evaluate F(x) in the
nonlinear least-square case, is often a viable approach for large-scale sparse problems.
The number of evaluations usually is very small compared to n, the problem dimension.
It is also true that the required finite-difference evaluations are totally independent tasks
and so parallel computation of this aspect is easy. However, the efficient utilization of
many processors, i.e., more than the number of required finite-differences, would require
a parallel evaluation of Vf(x). This situation is considered in the literature (46-48).

We do have three concerns. First, there is accuracy. While the accuracy in the Hes-
sian approximation is much better than a quasi-Newton (or secant) method, choosing the
appropriate step size, especially in the presence of noise, can be delicate. In this case
automatic differentiation may (eventually) provide a more accurate alternative.* Second,
while it is practically very useful to have matrix estimation methods that require the user
to supply only a gradient subroutine, in some cases it may be more efficient to access the
function and the gradient in a more fine-grained manner (e.g., component-wise), or per-
haps as a sum of ‘‘small’’ functions (see following section). Finally, the estimated Hes-
sian matrices will be symmetric but not, in general, positive-definite. Therefore solving
for the Newton direction does not necessarily lead to a descent direction and so a
negative-curvature method (discussed above) is appropriate.

Partial Separability
Many large-scale optimization problems are presented in a partially separable form:

) = D), | (10)
i=1

where each of the ‘‘element’’ functions f; has a Hessian matrix of low rank relative to n.
Considerable work has been done on the development of large-scale optimization meth-
ods designed especially to exploit this form: Philippe Toint, of the University of Namur,
Belgium, has been the primary advocate of this approach (e.g., 50-53). Certainly this
form leads to convenient design of subroutines to evaluate the gradient (and perhaps the
Hessian). For example, in Figure 4, we consider the evaluation of the function, gradient,
and Hessian in the distance conformation problem. To simplify we consider the special
case when the molecule is restricted to lie in a straight line, namely the one-dimensional
distance conformation problem.

Note that to evaluate the function alone requires 5 * n, operations (adds or multi-
plies), to evaluate the function and the gradient requires 9 - n, operations, and to eval-
uate the function, gradient, and Hessian requires 14 - n_, operations. Therefore, in this
case not only does partial separability lead to a convenient form for evaluating f and its
first and second derivatives, it leads to an efficient method as well. Note that a single
subroutine to evaluate the triple (f, Vf, V?f), or a leading subset of this triple, enhances
efficiency: intermediate quantities can be reused.

If the element functions all depend on only a few variables—the usual case—then
the full Hessian will be sparse and, if desired, can be formed to use in the calculation of

*It is interesting to note that the graph-coloring analogies used in the sparse finite-difference work are also
applicable in the automatic differentiation setting (49).

176 Large-Scale Numerical Optimization

{Determine function value}

Fork=1:n.do {n. is the number of edges (elements)}
Let ex = (3,7), ¢ > J
t =z — z;

enddo

t2=11.%t! {pointwise multiplication}

3=t —d.«d {pointwise multiplication, subtraction}

f=@E7)

{Determine gradient. Initially, g = 0.}
For k =1:n, do

Let ex = (i,5),i > j

gi = gi +4t3(k) - t' (k)

9; = gj — 4%(k) - '(k)
enddo

{Determine Hessian. Initially, H = 0.}
For k=1:n, do
Let ex = (4,7),i> J
H(i,j) = H(i,j) - 8t3(k) - 4t3(k)
H(jii) = H(i,j)
H(i,i) = H(i,i) + 8t(k) + 4t3(k)
H(j,5) = H(j,5) + 82(k) + 4°(k)
enddo

FIGURE 4 Evaluation of one-dimensional molecule function, gradient, and Hessian.

a search direction. However, the definition of partial separability implies that each ele-
ment function has a symmetric low-rank Hessian matrix which does not necessarily im-
ply dependence on only a few variables. Still, if there are only a few such global element
functions (i.e., element functions that depend on many of the variables, then it may still
be possible to proceed with a direct factorization method using sparsity. To illustrate,
consider the following.

Let H = H, + H, where H, is sparse and H, is dense but is computed as
H, = UUT, where U is a t-by-n matrix with t << n, and rank(U) = t. A system of the
form Hs = r can be replaced with:

<) -

Note that system (11) can be solved using a symmetric sparse factorization (e.g.,
54). Of course if the true Hessian H is not positive-definite then we may wish to use a
factorization of the matrix in (11) capable of revealing negative curvature with respect to
the Hessian matrix H.

Instead of evaluating the Hessian matrix, it may be advantageous to estimate the
elemental Hessian matrices, separately, using dense secant approximations. Each ele-
ment function is of low rank and so a small dense approximation to each element Hessian
is reasonable. (The elemental Hessian approximations can then be added together to form
the full Hessian approximation as described above; alternatively, the elemental Hessian

Large-Scale Numerical Optimization 177

matrices can be used in an iterative way to solve for the next search direction, in which
case they need not be collected together. A third possibility, in cases where sparsity pre-
vails, is to integrate their summation with a sparse multi-frontal linear solver) (54).
Unfortunately the elemental matrix approximations cannot be guaranteed to be positive-
definite and so the positive-definite secant updates cannot be used. This had led to a se-
rious investigation of alternative updates with the symmetric rank-1 update (SR1) being
particularly popular (e.g., 55-57).

Exploiting the partial separable structure of many large-scale optimization prob-
lems is often an economic approach. However, this approach does not serve every need.
We consider three limitations.

First, there are large-scale optimization problems that are not in a partially sepa-
rable form but which can be solved using sparsity. Consider, for example, the following.
Let f;, f», and f; each be functions of many variables, each with sparse Hessian matrices.
Assume that the sum of the Hessian matrices,Z;_, V7, is sparse. Now consider the prob-

lem: min f(x) = fi(x) * f2(x) * f3(x). Clearly f'is not in partially separable form. However,
it turns out that the Hessian matrix of f can be written:

V= VY, - fofs + Vo - fifh + V5 - fifs + UTUY, (12)
where U = (Vf,, Vf;, Vf3), and T is a symmetric 3 X 3 matrix,
0fsf 13
T= [f3 Of.]- "
5 fi 0

Therefore, the Hessian is the sum of a sparse matrix and a symmetric low-rank matrix.
The Newton step (for example) can be computed by using a technique similar to (11).
Therefore, restriction to the partial separable form is not useful in this case.

Second, the optimization problem may be easily expressed in partially separable
form, in principle, but perhaps it is not convenient for the user to do so. For example, the
user may wish to begin with a given subroutine to evaluate the function and gradient.

Third, there is the case of global variables. A variable is global, with respect to a
given partial separable formulation, if it appears in most of the element functions. If
there are several such variables, and they are involved in significant common evaluations
in most of the elements, then separate evaluation of element functions may be an inef-
ficient way to evaluate the overall function or gradient.

In summary, the partial separable form arises frequently in large-scale optimiza-
tion and it is often worthwhile exploiting this. However, it may not always be convenient
to express a function in this form and so there will remain a need for optimization ap-
proaches that make fewer assumptions on the user-supplied subroutines.

Conjugate Gradient and Limited-Memory Secant Methods

For very large problems it may not even be feasible to store a sparse matrix approxima-
tion to the true Hessian matrix. In such cases conjugate gradient methods and limited-
memory secant methods provide alternatives.

A number of nonlinear conjugate methods have been proposed (e.g., 58—65), and
Fortran codes are publically available. Their great attraction, beyond simplicity, is their

178 Large-Scale Numerical Optimization

Repeat
ﬂk = Wﬁ;j {yk—l = Vf(lk) - Vf(xk—l)}

Tkl

dy = =V f(zi) + Brdi—
Tky1 = Tk + opdy

FIGURE 5 The Polak-Ribiére conjugate—gradient algorithm.

very small memory requirement—in their pure forms several dense vectors are required
but no matrices. For example, consider the Polak-Ribiere (62) algorithm in Figure 5.

A line search algorithm will determine a,, the step length. Typical of conjugate
gradient methods, this method is easy to program (given a line search routine) and re-
quires little memory; only a handful of n-vectors.

Acceleration of convergence of these procedures can usually occur through the use
of clever ‘‘restart’’ procedures and preconditioning strategies. Unfortunately, the skillful
use of these techniques is very much an art requiring some experience with the problem
at hand. Nocedal (66) has done some numerical experimentation and comparisons
amongst several nonlinear conjugate gradient codes: he reports his results and gives ten-
tative conclusions and advice.

An alternative to a nonlinear conjugate gradient method is a limited-memory secant
method (e.g., 67-69). A limited-memory secant approximation does not update an ex-
plicit matrix approximation; instead, an initial sparse approximation to the inverse Hes-
sian is saved (usually a diagonal matrix) along with a small collection of vectors
representing the recent updates. This set is typically updated at each iteration by deleting
vectors corresponding to old information and adding new. Note that since the density of
the approximating matrix is not an issue—it is not formed explicitly—the very successful
dense positive-definite secant update formulae can be used. Of course this is offset to
some extent by the fact that only a small set of updates can be used. Nash and Nocedal

(70) report on numerical experiments, comparing limited-memory quasi-Newton codes
to (truncated) Newton methods.

Concluding Remarks on Unconstrained Problems

We conclude this section with a few remarks on the state of affairs with respect to the
large-scale unconstrained optimization problem.

First, it is clear that there has been much progress in this area over the past 10
years. Work is continuing—and further research is definitely needed—but several alter-
natives are now available. Indeed, software packages especially tailored to the large-scale
user are available (e.g., 50,71). Of course with a variety of methods comes the question:
which to choose? Expect no clear definitive answer to this question for a long time, if
ever. What we can offer are some (personal) guidelines.

The methods that are most robust and can achieve the greatest accuracy are the
methods that compute second derivatives (or use finite-difference Hessian approxima-
tions) and that use sparse matrix factorizations with the ability to detect and use negative
curvature. Computing second derivatives is feasible for many large-scale optimization
problems. Such methods are particularly good for ill-conditioned problems and problems
with much negative curvature. On the down side, the memory requirements may still be

Large-Scale Numerical Optimization 179

too much despite using sparsity, and some problems can be solved just as well with less
effort. Methods that compute second derivatives (or use finite-differences) and use an
iterative technique to solve the linearized problem (e.g., conjugate gradients [CG]), and
that have the ability to deal reasonably with negative curvature, provide an alternative if
the direct factorization is too expensive in space or time (e.g., 72,73). Of course the ef-
fectiveness of the CG iteration is problem dependent and may need preconditioning—a
heuristic situation. In terms of overall reliability and robustness, the elemental secant
methods follow the second-derivative methods (if the problem is expressed in the par-
tially separable format) followed by the limited-memory secant and nonlinear conjugate
gradient routines. [Of course this list can be read in reverse order: starting from the most
inexpensive methods at the bottom (if they work!) to the most expensive at the top.]

The sparse secant updates, namely those that do not exploit the partially-separable
structure, are too inconsistent in behavior to include in our list; however, they still provide
a tool that can be useful on occasion.

A final remark: this list emphasizes the need for a computing environment that al-
lows for experimentation within the large-scale optimization context. It is clear that the
job of selecting a suitable approach to a large-scale optimization problem is not an easy
one and is certainly not easily done without a trial-and-error process. This is very difficult
to do today, without a major time investment, due to the lack of a flexible computing
environment for large-scale optimization.

CONSTRAINED OPTIMIZATION

The general constrained optimization problem we consider is
min, {fx) : c(x) = 0,1 = x < u}, (14)

where f is a twice continuously differentiable mapping from R" to R', c is a twice con-
tinuously differentiable mapping from R” to R™, with m < n, and I, u are vectors of lower
and upper bounds, respectively, | =< u. (For any i, if [; = —o, then x; is unbounded be-
low; if u; = « then x; is unbounded above.) The region defined by the constraints,
{c(x) = 0,1 = x = u}, is coined the feasible region; we denote this region ¥. A problem
may have no bounds on the variables, i.e., u = ®, | = — o, in which case the optimi-
zation problem reduces to an equality-constrained problem: min {f(x) : c(x) = 0}.

There are other formulations of the general problem. For example, a problem may
include constraints of the form c(x) = 0; however, simple transformations such as the
introduction of slack variables can yield the form given in (14) and so, for simplicity, we
assume this formulation.

Again we restrict ourselves to methods for finding a local minimizer. In the con-
strained case this means we look to find x. such that there exists a scalar & > 0, where
8, x. satisfy:

foe) = fx), Vx Efx: ||lx — x| <8, x € F}. (15)

Most of the issues and concerns in unconstrained minimization carry over to the
constrained case. For example, the two basic globalization strategies for unconstrained
problems, line search and trust-region, have counterparts for constrained problems
(though each has more complications in the presence of constraints).

180 Large-Scale Numerical Optimization

In a certain sense constraints make a problem easier by restricting the domain of
interest. However, constraints do complicate things in several ways.

First, handling constraints and exploiting sparsity are two objectives that can be
difficult to achieve simultaneously. For example, a common approach to a problem with
linear (or linearized) constraints is to determine a basis for the null space of the matrix
corresponding to the linear (linearized) constraints and then work in the null space (e.g.,
7). To illustrate, consider the problem, min,{f(x) : Ax = 0}. If the columns of the matrix
Z form a basis for the null space of A, then a ‘‘reduced Newton system’’ is given by

Z"Vz)s = -Z'Vf, (16)

and the reduced Newton step is s = Z5. This is a powerful methodology in constrained
optimization. However, it is difficult to adapt to a large-scale problem with the additional
hope of maintaining sparse matrices. There has been some successful work on under-
standing the problem of determining a sparse basis for the null space of a sparse matrix
(74-76), i.e., finding a sparse matrix Z in (16); however, this is only part of the problem.
A direct factorization method requires a representation of the reduced Hessian matrix,
matrix Z” VfZ in (16), and if sparsity is also desired this is a difficult request to satisfy.
Of course an iterative null space approach can be followed without explicitly forming Z”
V?Z; i.e., in (16) we need not form the matrix Z” V?fZ but instead save the sparse ma-
trices, Z, V%, and apply them, in sequence, to perform multiplication within an iterative
solver. Nevertheless, the point is our options have been limited.

A second difficulty caused by the presence of constraints occurs when the con-
straints are nonlinear. The difficulty stems from the fact that most computational math-
ematics is linear; hence, a nonlinear manifold is usually difficult to follow. Algorithms
that try to maintain feasibility, in the general nonlinearly constrained problem, can be
very slow, expending much time trying to follow nonlinear boundaries. To see the use-
fulness of linearity, consider the nonlinear equality-constrained problem:

min {fz): e(z) = 0}. an
In general it is difficult to restrict the iterates {z,} to be feasible, i.e., c(z;) = 0,
k =1,2,. ... However, if there is sufficient linearity then it is possible. For example,

suppose the variables z can be partitioned z = (y, x) such that ¢(z) = 0 can be equiv-
alently written:

T(x) -y + t(x) = 0, (18)

where T(x) is a nonsingular matrix for all x. Then, y appears in a linear role and can be
‘‘eliminated’’ via the equation:

y = —Tx) 't). (19)

Therefore, problem (17) can be reduced to the following unconstrained problem:

iR £(y(x),x) 20)

where x is the ‘‘independent’” vector and y depends on x through (19). An algorithm for
unconstrained minimization can be used to solve (20), and the nonlinear manifold,

Large-Scale Numerical Optimization 181

c(z) = 0, will be satisfied (implicitly) at every iteration. The key to the reduction of (17)
to (20) is the linear role* played by the vector y.

An alternative to an algorithm that maintains feasibility is one that ignores it (ex-
cept in the limit). This leads to two concerns. First, there is the question of how to force
convergence from a distant point and what constitutes an improvement—hence the need
for “‘merit’’ functions (and associated difficulties). Penalty and barrier functions are typ-
ical merit functions (see, e.g., Refs. 4-7). Second, in practical problems functions some-
times are not defined outside the feasible region; penalty or exterior methods clearly have
difficulties in such cases.

A third difficulty due to the presence of constraints is specifically related to ine-
qualities [in our formulation (14), this refers to finite bounds on the variables]. Inequal-
ities give a combinatorial flavor to the problem which can cause some algorithms to
require many iterations when the dimension is high. In addition, inequality constraints
can increase the complexity of dealing with sparsity and can make the design of efficient
parallel algorithms difficult.

There are two basic categories of algorithms for problems with inequalities. These
are ‘‘active-set’’ algorithms and *‘passive-set’’ algorithms. (The first term is in common
usage; the second is less common—we use it to refer to algorithms that are not *‘active-
set’’!) In each iteration of an active-set algorithm the inequality constraints are divided
into two sets. The set of constraints currently satisfied exactly defines the active set o:
dAx) = {i : x; = I;, or x; = u;}. The complementary set, the set of constraints corre-
sponding to variables not at their bounds, is the set of inactivities. In active-set algo-
rithms, the determination of the ‘‘next-step’’ depends on these two sets.

In contrast, a ‘‘passive-set’’ algorithm does not permit variables to be at their
bounds except in an asymptotic sense (i.€., in the limit as k — o, where k is the iteration
counter).

There are many examples of successful algorithms in both camps, active-set and
passive-set. The simplex method for linear programming (e.g., 77), is the most promi-
nent example in the active-set category; smooth penalty and barrier methods illustrate the
passive-set approach. Note that an algorithm that is an active-set algorithm need not be
restricted to a feasible-point algorithm (78).

Passive-set algorithms appear well-suited to large-scale problems: they typically re-
quire fewer iterations than many of their active-set counterparts and can be implemented
using fixed data structures, which are very convenient for exploiting sparsity and paral-
lelism. Some active-set algorithms are poorly suited to the large-scale setting; typically,
those that restrict or inhibit change in the activity set from one iteration to the next do not
fare well on large problems.T However, recently there has been considerable investiga-
tion into active-set methods that allow for significant change in the active set from one
iteration to the next, and these methods do appear much more promising for large-scale
problems.

In summary, the presence of constraints, despite decreasing the volume of the
search space, tends to create more difficult problems (especially in the large-scale case

*Example 3 in the Introduction illustrates this type of *‘elimination.” .
*A glaring counter-example to this statement is the simplex method which restricts change in the activity set to

a single variable each iteration. This strategy does not work well for more general (nonlinear) functions. Neither
does it work well for some linear programming problems with special structure such as staircase problems.

182 Large-Scale Numerical Optimization

when maintaining sparsity is important). Nevertheless, there has been significant
progress lately, especially with respect to simple bound constraints and linear/quadratic
programming. Our purpose here is to summarize and highlight some of the progress as
well as attempt to give pointers to the future.

Minimization Subject to Bounds
Many optimization problems are constrained in a simple way:

nlin{ﬂx): 1=x=u}, @n

where | = u. This is sometimes referred to as a ‘‘box-constrained’’ problem.

Recently there has been considerable research effort on box-constrained problems,
aimed at developing new algorithms, and refining old ones, especially with an eye toward
large-scale sparse problems. Some of this work has been targeted specifically at the case
where the objective function is quadratic. We will begin there.

Let fix) = g'x + 1x"Hx, where H is a symmetric matrix; hence, our problem is:

. 1
rr;m{gfx + 3 THx: 1 < x < u}. (22)

Clearly if the set of variables bound at the solution is known, that is, if
A(x) = A(x.), and the tight variables are at their appropriate bounds, then a reduced
Newton system will find the solution in a single step:

solve Hgsg = —gr, update: x; = xg + Sg, (23)

where the subscript R denotes the ‘‘free’’ variables (i.e., those variables not at bounds).
The matrix Hy consists of those rows and columns of H identified by the free variables.
The idea behind the Moré and Toraldo algorithm (79), building on previous work by
Dembo and Tulowitzki (80), and Bertsekas (81), is to mix steps that attempt to ‘‘guess’’
the active set at the solution with reduced Newton steps. The reduced Newton steps (23)
are not solved for exactly: Moré and Toraldo propose a conjugate gradient ‘‘inner-
iteration’’ for the inexact determination of this reduced Newton step. If a boundary is hit
in the process then an efficient piecewise linear minimization is followed.

Therefore, the Moré-Toraldo algorithm is an active-set method with the ability to
completely change the activity set in a single iteration. This is important for a large-scale
problem. Coleman and Hulbert (82) suggest an alternative active-set algorithm in which
they show how to compute and use direct sparse factorizations using the space required
by the sparse Cholesky factor of a positive-definite matrix with the structure of the orig-
inal matrix H.

Alternative strategies in the passive-set vein, also suitable for the large sparse case
but currently restricted to the situation where H is positive-definite, have been suggested
by Han, Pardalos, and Ye (83) and Coleman and Hulbert (84). These two approaches are
entirely different: the Han-Pardalos-Ye method is an interior-point algorithm following
the work of Ye (85); the Coleman-Hulbert algorithm is an exterior-point algorithm based
on a Newton approach to the optimality conditions. However, the two methods are similar
from the linear algebra point of view. Both methods require the repeated solution to a
(short) sequence of positive-definite systems, all with the same structure as the original

Large-Scale Numerical Optimization 183

matrix H. Work on extending these approaches to problems with indefinite matrices, and
to problems with linear constraints, is now continuing.

Adaptation of the methods mentioned above to problems with general nonlinear
objective functions is under investigation. Other related methods, again especially
targeted toward the large-scale case, have also been proposed recently (e.g., 55,56,
86-88).

What makes these newly proposed methods attractive for large-scale problems?
First, they all try to avoid excessive number of iterations due to the combinatorial aspect
of the problem (caused by the inequalities). Second, these methods pay some respect to
the problem size by either considering iterative linear solvers or sparse direct factoriza-
tions. Finally, in several of the cases there has been some attention paid to the use of
parallelism.

Linear Constraints (and Bounds)
Here we consider problems of the form:

mxin{ﬂx): Ax = b, 1= x < u}. (24)

There has been recent research activity on this problem, especially in the case where f is
a quadratic function. Again the basic approaches generally fall into two categories:
active-set or passive-set. Many of the basic approaches used in the box-constrained case,
discussed above, can be adapted to this more general situation. The algorithms for (24)
are more complex, of course, due to the need to project onto the linear manifold Ax = b.

Three linear algebra situations play a prominent role in most of the proposed large-
scale algorithms for problem (24). We will center our discussion around this aspect.

First, there is the weighted least-squares problem. This problem is central to vir-
tually all of the new passive-set algorithms for linear programming* including interior-
point, barrier, and exterior-point algorithms. There are several examples of work in this
area (89—-100). Several important related problems can also be efficiently solved using a
sequence of weighted least-squares problems: linear [, estimation (101, 102); linear I,
estimation (103); the linear p-th-norm problem (104).

These various passive-set methods for linear programming have strikingly different
computational and theoretical properties; however, from a linear algebra point of view
they are quite similar. In particular, a sequence of least-squares problems of the form

Ls.

D;'ATsy = —Dqg (25)

must be solved; a primary aspect in which the algorithms differ is in the choice of di-
agonal weighting matrices D,. These new passive-set algorithms have, in turn, increased
interest in methods for solving a sequence of sparse least-squares problems including di-
rect (sparse) factorization methods, parallel solvers, and iterative least-squares solvers
(e.g., 47,48,105-107).

A second linear algebra problem arising in some of the new algorithms for large-
scale problems with linear constraints, is the solution of reduced Newton systems of the

*Linear programming is a special case of (24) in which the objective function is linear: fx) = g'x.

184 Large-Scale Numerical Optimization

form (16). In some cases this involves determining a basis Z for the null space of a matrix
A such that the reduced Hessian matrix, Z V*fZ, is sparse and can enjoy a sparse fac-
torization. This works when the structure of Vf is very sparse and simple (108). How-
ever, this does not appear to be a promising avenue for general problems: construction of
a sparse (or compactly represented) matrix Z and the design of an efficient iterative solver
for (16) has more potential for general problems. Research issues include the develop-
ment of efficient preconditioning strategies and how to deal with bounds on the variables
(and perhaps changing activity sets).

The third linear algebra problem is the solution of sparse symmetric indefinite sys-
tems of the form:

1) [}

where D is a positive diagonal matrix (in some cases D is the identity, or a scaled identity
matrix; in some cases D is the zero matrix). Note that the least-squares problem (25) can
be solved using a system of the form (26). The reader can work out the details. Clearly
any sparsity that was present in the original matrices H and A shows up in this augmented
form (26), and that is the attraction of this approach. The dimension of the system
is large, m + n, but this is often more than compensated for by the sparseness of the
matrices. Unfortunately, the matrix in (26) is not positive definite; hence, the arsenal
of techniques developed for sparse symmetric positive-definite systems is not applicable.
Therefore, renewed interest is being shown in new and old techniques, direct and
iterative, for solving sparse symmetric indefinite systems in general, and systems
with the block structure evident in (26) (see Refs. 54,109,110). Beyond solving sys-
tems of the form (26), optimization has other concerns: determination (and use) of
directions of negative curvature, guaranteeing descent properties, trust-region implemen-
tations, and the affect of the bound constraints (in active-set methods consideration
must be given to the modification of a sparse factorization when the activity set changes)
(e.g., 111).

The ease with which a large-scale optimization algorithm can be integrated with an
appropriate parallel sparse linear solver, to produce an efficient overall procedure, will
play an important role in determining the ultimate utility of proposed large-scale opti-
mization algorithms in parallel computing environments. Certainly many of the new
passive-set methods appear to be leading contenders since their interface with parallel
linear solvers is exceedingly simple; just plug it in. In contrast, some other large-scale
methods, such as the simplex method for linear programming, appear difficult to adapt to
the parallel world. Certainly a simple interface with a ‘‘black-box’’ sparse linear solver
would not produce an efficient overall procedure in this case.

Nonlinearly Constrained Problems

Effective procedures for problems with nonlinear constraints, even for the dense case, are
still being heavily researched. Certainly the importance of sequential quadratic program-
ming (SQP), in which a sequence of quadratic approximations is solved (perhaps approx-
imately), is well-established (112-117). Therefore the work on large-scale quadratic
programming,

Large-Scale Numerical Optimization 185

i 1
msm{Vf(xc)Ts + EsTHcs: As=0,l, =5 = uc} 27

is directly relevant (111, 118). However, globalization strategies are still quite unsettled,
with centers of gravity continually shifting from /,-penalty functions, to /,-penalty func-
tions, to barrier functions, to augmented Lagrangian approaches, and around again. De-
spite this apparent thrashing, there is progress: for example, it is now clear that the
L,-penalty function can be used much more effectively than was thought possible just a
few years ago. Some of the numerical difficulties caused by ill-conditioning can be over-
come to a large degree (119,120).

Still, despite this uncertainty as to the best designs of overall methods, it is clear
that the main linear algebra concerns are the same as for the linearly constrained prob-
lems discussed above (due to linearization), with increased emphasis on approximate so-
lutions. So the progress on solving large linear systems of the form (26) is directly
applicable.

CONCLUDING REMARKS

We have given the reader a quick personal tour of large-scale optimization. This field is
enjoying a surge of research activity with several new trends; we have tried to capture
some of them and explain some of the central concerns of large-scale optimization.

We conclude with a discussion of two developments, each with so much potential
they may change the face of large-scale optimization altogether: they are automatic dif-
ferentiation and parallelism.

Automatic Differentiation

Evaluation of the function, gradients, and possibly second-derivatives, often represents a
significant portion of the overall computational cost of an optimization procedure. More-
over, hand-coding of derivative routines is an error-prone and tedious task; numerical
approximations carry with them numerical errors. Automatic differentiation potentially
offers an error-free, automatic, and efficient alternative. There still are some problems
(summarized in our concluding paragraph in this section), but the recent flurry of re-
search activity and related results (121-127) suggests great promise. The potential impact
on large-scale optimization work is significant.

Automatic differentiation (AD) works like this. The user presents a description of
the function to be minimized (and constraints) to the AD compiler. This is usually in the
form of a Fortran or C program. The automatic compiler then produces a new program
(usually in C or Fortran) that will evaluate the function and the gradient (and the Hessian
if requested) at any point x in a single efficient routine. The code produced by the com-
piler is efficient: efficiency is achieved by calculating intermediate quantities in a good
order and by saving and re-using intermediate quantities in the function, gradient, and
Hessian calculations.

Automatic differentiation is distinct from symbolic differentiation. A symbolic dif-
ferentiator will accept the same input as the automatic differentiator, but will produce

186 Large-Scale Numerical Optimization

code that represents the gradient (and Hessian if requested). The function evaluation
routine is unchanged; it remains the user-written code. No account is made of efficient
computation of the pair {f(ix), VAx)}, or the triplet {f(x), VAx), V2fix)}. Intermediate
quantities are not reused; typically, there is no bound on the accuracy of the resulting
computations when the gradient (or Hessian) routines are used (in contrast to automatic
differentiation).

The automatic differentiator can also reveal parallelism that can be used in the
function, gradient, and Hessian evaluations. This is because the computational graph that
is used in the AD compiler to determine the order of computation naturally exhibits the
available parallelism as well. Researchers in automatic differentiation are already inves-
tigating this aspect.

The basic idea behind automatic differentiation is repeated application of the
chain rule and saving intermediate quantities along the way. Indeed it has been argued
(122) that instead of actually forming the Newton system it may be more efficient to
solve a larger but sparser adjoint system that involves the intermediate quantities
treated as temporary variables. This is similar to the techniques we used in (11), (12),
and (13).

Still problems remain to be worked out. The first is a subtle one (and may not admit
a solution). The code produced by the automatic differentiator is dependent on the form
of the user-supplied function routine. Everything follows from this. However, different
user-supplied encodings of the same function will yield different outputs from the AD
compiler. It appears these outputs may differ widely and it is certainly not clear how to
best encode the function originally.

Other problems: the space required by the automatic differentiation process (saving
all those intermediate quantities!) may be quite substantial; the AD compiler itself is a
large and complex code begging portability and ease-of-use issues; finally, can sparsity
be fully and cleanly exploited? In our view these issues are extremely important for ul-
timate utility in the large-scale optimization context. Research activity is ongoing on
these fronts and we can expect good progress in the next few years.

Parallel Computation

Parallel computation will soon play a major role in much of large-scale computational
mathematics. Is optimization poised to effectively utilize this new and powerful technol-
ogy? What are the research issues specifically relating parallel computation and large-
scale optimization?

In order to see what role parallelism can play in large-scale optimization it is useful
to both broaden and narrow our focus. On the broader scale it should be remembered that
local minimization occurs in a context. This broader context often involves the solution
of many independent minimizations that can be done in parallel. This easy coarse-grained
parallelism yields very high parallel efficiency. Examples in this domain: global opti-
mization typically involves the solution of many local disjoint minimization problems
(18, 21); optimization problems with integrality constraints can be solved using various
branch-and-bound techniques involving local nonlinear minimizations (13). In both these
situations some communication and orchestration is required; however, the computa-
tional work in the local minimizations easily dominates communication/global orches-
tration costs by several orders of magnitude. These are important problem classes that
typically yield many disjoint local minimization problems; however, the most common is

Large-Scale Numerical Optimization 187

probably the following. In many cases the objective function to be minimized is not really
known precisely; often the form is known (or accepted), but there are several unknown
parameters. These parameters are usually determined only after a lengthy trial-and-error
period involving many independent minimizations—another perfect candidate for coarse-
grained parallelism.

If we now sharpen the focus and look within an optimization procedure, we see the
possibility of using parallelism* in both linear algebra computations and in the evaluation
of function, gradients, and Hessians (46—48, 131-133). There are some subtleties here
that have optimization implications and so we must examine this possibility more
carefully.

First, it is clear that if the function and derivative evaluations dominate the com-
putational costs then parallelism must begin there. A good example of this is the bone
modelling problem we discussed in Example 3 (Fig. 3). In this example, on realistic prob-
lems, the finite-element analysis (i.e., the function evaluation) can take in excess of 90%
of the serial computational time. Of course, the difficulty here is that this parallelization
effort (organize the function evaluation to compute the function efficiently in parallel)
falls into the hands of the user in general. General guidelines can be given but beyond that
it will usually be up to the user. (It may be possible to design efficient parallel strategies
for some very common function forms, e.g., partially separable functions. It may also be
that automatic differentiation will save the day.)

Another issue is brought up by this bone reconstruction example. Despite the dom-
inance of the overall computational cost by the function evaluation, it is incorrect to infer
that the selection of the optimization routine is relatively unimportant. It is true that the
computational cost of the linear algebra directly involved in the determination of a search
direction may be (relatively) insignificant in this case; however, the choice of algorithm
can dramatically influence the number of function evaluations and therefore a judicious
choice can be most significant. For example, for a sufficiently large problem with ine-
qualities some active-set methods will be a poor choice. Due to the combinatorial sen-
sitivity of some active-set methods there may be a significant growth in the number of
iterations—and therefore function evaluations—as the dimension grows. Passive-set
methods, on the other hand, are more likely to require fewer (more expensive) iterations,
and therefore fewer function evaluations. Moreover, in a parallel computing environment,
it is difficult to effectively orchestrate the changing activity sets and corresponding ma-
trix dimensions of an active-set method. Passive-set methods typically deal with a fixed
dimension and fixed matrix structures and are therefore more likely to yield efficient par-
allelism. Finally, an algorithm that uses exact second derivatives may also significantly
decrease the number of function evaluations. If the second derivatives can be computed
efficiently, using parallelism, then this extra cost per iteration (over a method that uses
only first derivatives) may be cost-effective.

To emphasize: The availability of a parallel computer should influence the choice
of serial optimization algorithm to be used in a parallel computing environment. A serial
algorithm that yields more work that can be effectively computed in parallel, perhaps at
some increased serial cost per iteration, is to be preferred if the number of serial outer
iterations decreases significantly.

*The literature on the parallel solution of problems with special structure is extensive (128—130), but falls out-
side the domain of this article.

188 Large-Scale Numerical Optimization

Linear algebra considerations may also affect the choice of serial optimization al-
gorithm used in a parallel computing environment. For example, in the serial world the
unconstrained minimization of nonlinear functions is often performed by the positive def-
inite secant update (BFGS). The modern choice is to update the Cholesky factor of the
current approximation in a stable and efficient manner requiring O(n?) work. Therefore,
the linear algebra involved per iteration is quite acceptable: O(n*) work for the Cholesky
update, and O(n?) for the triangular solve. Unfortunately, this may not work well on a
parallel machine. The difficulty is that known stable algorithms for these two steps ex-
hibit limited parallelism. Couple this with the low-order of work required, within each
iteration, and it is difficult to achieve good parallel efficiency (132, 133). It may be better
to reconsider the methods for updating the inverse approximation in this case (131). The
work is still O(n?), but the algorithms required exhibit much more parallelism. Of course,
this option is not viable for sparse problems since the inverse of a sparse matrix is almost
always dense (134).

Optimization problems with large dense matrices exist (e.g., Example 3, Fig. 3);
for these we can expect to do well in the linear algebra arena, given the emphasis the
linear algebra community has placed on developing high-performance dense linear alge-
bra routines. However, most large-scale optimization algorithms do not exhibit large
dense matrices. Much more common are large sparse matrices and large structured sys-
tems. Large-scale optimization needs effective high-performance algorithms for these
classes of matrices.

Certainly there is considerable work on special structures as well as general sparse
systems. However, these are difficult problems and progress is slow and more research
work is needed.

Nevertheless, it is expected that reasonable success will be obtained in our ability
to obtain high-performance parallel algorithms for standard factorizations of large sparse
matrices and large matrices with a variety of standard structures. Therefore, serial opti-
mization algorithms that plug into efficient parallel versions of standard linear algebra
tasks, for example, the sparse QR-factorization will yield better overall performance than
algorithms that use specialized low-order sparse matrix updating. We expect passive-set
algorithms to ultimately yield better performance on parallel computers than active-set
methods, for example.

In summary, numerical optimization and parallelism appear to intersect on two
levels. At the high end, there is coarse-grained parallelism for problems that yield nu-
merous disjoint local minimizations. This is typically easy parallelism to get, although
research on effective orchestration, communication, load balancing is ongoing and still
needed, and is very important. Obtaining parallelism for optimization at the low end,
linear algebra (especially sparse and/or structured systems) and function and derivative
calculations, is also ongoing and yields both fine-grained and medium-grained parallel-
ism. The (local) optimization challenge consists of designing serial optimization algo-
rithms that can effectively use the parallelized linear algebra and function evaluation
subroutines.

It is interesting to note that we have said nothing about the design: of general-
purpose parallel local minimization algorithms per se. The parallelism we have discussed
encircles the local minimization procedure or is internal to it, but the optimization algo-
rithm itself remains serial; Typically some version of Newton’s method (an inherently
serial process). The general-purpose parallel optimization research to date has been
largely concerned with the design and modification of serial algorithms that can effec-

Large-Scale Numerical Optimization 189

tively use parallelism at either of these two levels. Barring a breakthrough, say a truly
parallel Newton process, this will continue to be the case.

ACKNOWLEDGMENTS

I extend thanks to a number of my Cornell colleagues for suggesting improvements to an
earlier version of this paper. Specifically, I thank Moshe Braner, Shirish Chinchalkar,
Yuying Li, Jianguo Liu, Michael Todd, Zhijun Wu, and Wei Yuan.

Research partially supported by the Applied Mathematical Sciences Research Pro-
gram (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy
under grant DE-FG02-86ER25013.A000 and by the Computational Mathematics Pro-
gram of the National Science Foundation under Grant DMS-8706133.

REFERENCES

T. E Coleman and Y. Li, Large-Scale Numerical Optimization, SIAM, 1990.

2. T. F Coleman, Large Sparse Numerical Optimization, Lecture Notes in Computer Science,
Volume 165, Springer-Verlag, New York, 1984.

3. J.E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization,
Prentice-Hall, Englewood Cliffs, NJ, 1983.

4. A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, John Wiley and Sons, New York, 1968.

5. R. Fletcher, Practical Methods of Optimization, Second Edition, John Wiley and Sons, New
York, 1987.

6. G.P. McCormick, Nonlinear Programming. Theory, Algorithms, and Applications, John
Wiley and Sons, New York, 1983.

7. P E. Gill, W. Murray, and M. H. Wright. Practical Optimization, Academic Press, New
York, 1981.

8. R. Fletcher, Recent Developments in Methods for Nonlinear Programming, Technical Report
NA/123, University of Dundee, 1990.

9. G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, Optimization, Volume 1 Hand-
books in Operations Research and Management Science, North-Holland, Amsterdam, 1989.

10. D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation, Prentice-Hall,
Englewood Cliffs, NJ, 1989.

11. S. A. Zenios, Parallel Optimization: Current Status and an Annotated Bibliography, ORSA J.
Computing, 1:20-43 (1989).

12. J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, Computer J.,
7:308-313 (1965).

13. Z. Wu, A Subgradient Algorithm for Nonlinear Integer Programming and Its Parallel Imple-
mentation, Technical Report TR91-09, Dept. Math. Sci., Rice University, 1990.

14. B. A. Hendrickson, Conditions for Unique Graph Embeddings, Technical Report CS-88-950,
Cornell University, 1988.

15. B. A. Hendrickson, The Molecule Problem: Determining conformation from pairwise dis-
tances, Ph.D. thesis, Department of Computer Science, Cornell University, 1991.

16. M. R. Garey and D. S. Johnson, Computers and Intractability. W. H. Freeman, San Fran-
cisco, 1979.

17. R. H. Byrd, C. L. Dert, A. H. G. Rinnooy Kan, and R. B. Schnabel, Concurrent Stochastic

Methods for Global Optimization, Math. Program., 46(1):1-29 (1990).

Y

190

18.

19.

20.
21.

22.
23.
24.

25.

26.

27.

28.
29.
30.

31.

32.
33.
34,
35.
36.
37.
38.
39.

40.

Large-Scale Numerical Optimization

E. Eskow and R. B. Schnabel, Mathematical Modeling of a Parallel Global Optimization Al-

gorithm, Technical Report CU-CS395-88, University of Colorado, Boulder, 1988.

A. H. G. Rinnooy and G. T. Timmer, A Stochastic Approach to Global Optimization. In:

Numerical Optimization, (P. Boggs, R. Byrd, and R. B. Schnabel, eds.) SIAM, New York,

1984, pp. 245-262.

A. Torn and A. Zilinskas, Global Optimization.

S. L. Smith. E. Eskow, and R. B. Schnabel, Adaptive, Asynchronous Stochastic Global

Optimization Algorithms for Sequential and Parallel Computation. In: Large-Scale

Numerical Optimization (T. F. Coleman and Y. Li, eds.) SIAM, New York, 1990, PP-

207-227.

Y. Censor and G. T. Herman, On Some Optimization Techniques in Image Reconstruction

from Projections, Appl. Num. Math., 3:365-391 (1987).

G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized
Tomography, Academic Press, New York, 1980.

G. T. Herman, Image Reconstruction from Projections: Implementation and Applications,

Springer, Berlin, 1979.

G. T. Herman, D. Odhner, K. D. Toennies, and S. A. Zenios, A Parallelized Algorithm for
Image Reconstruction from Noisy Projections. In Large-Scale Numerical Optimization, (T. F.

Coleman and Y. Li, eds.) SIAM, New York, 1990, pp. 3-21.

G. Subbarayan and D. L. Bartel, A Variational Model for Bone Construction/Reconstruction
and Its Applications, Technical Report, Sibley School of Mechanical and Aerospace Engi-
neering, 1989.

G. Subbarayan and D. L. Bartel, VSAFE: A Program for Variational Sensitivity Analysis
Using the Finite Element Discretization, Technical Report, Sibley School of Mechanical and
Aerospace Engineering, Cornell University, 1989.

D. M. Gay, Computing Optimal Locally Constrained Steps, SIAM J. Sci. Stat. Computing,
2:186-197 (1981).

J. J. Moré and D. C. Sorensen, Computing a Trust Region Step, SIAM J. Sci. Stat. Comput-
ing, 4:553-572, 1983.

R. H. Byrd and R. B. Schnabel, Approximate Solution of the Trust Region Problem by Min-
imization Over Two-Dimensional Subspaces, Math. Program., 40:247-263 (1988).

G. A. Schultz, R. B. Schnabel, and R. H. Byrd, A Family of Trust-Region-Based Algo-
rithms for Unconstrained Minimization with Strong Global Convergence Properties, SIAM J.
Numer. Analysis, 22(1):47-67 (1985).

J. E. Dennis and J. J. Moré, Quasi-Newton Methods, Motivation and Theory, SIAM Rev.,
19:46-89 (1977).

M. J. D. Powell and Ph. L. Toint, A Note on Quasi-Newton Formulae for Sparse Second
Derivative Matrices, Math. Program., 20:144—-151 (1981).

M. J. D. Powell and Ph. L. Toint, The Shanno-Toint Procedure for Updating Sparse Sym-
metric Matrices, IMA J. Numer. Analysis, 1:403—413 (1981).

D. E Shanno, On the Variable Metric Methods for Sparse Hessians, Math. Comp., 34:499—
514 (1980).

D. C. Sorensen, An Example Concerning Quasi-Newton Estimation of a Sparse Hessian,
SIGNUM Newslett., 16:8—10 (1981).

Ph. L. Toint, On Sparse and Symmetric Updating Subject to a Linear Equation, Math.
Comp., 32:839-851 (1977).

Ph. L. Toint, A Note on Sparsity Exploiting Quasi-Newton Methods, Math. Program.,
21:172-181 (1981).

Ph. L. Toint, A Sparse Quasi-Newton Update Derived Variationally with a Non-diagonally
Weighted Frobenius Norm, Math. Comp., 37a:425-434 (1981).

A. Curtis, M. J. D. Powell, and J. Reid, On the Estimation of Sparse Jacobian Matrices, J.
Inst. Math. Appl., 13:117-119 (1974).

Large-Scale Numerical Optimization 191

41.

42.

43.

44,

45.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

61.

62.

T. F. Coleman and J. J. Moré, Estimation of Sparse Jacobian Matrices and Graph Coloring
Problems, SIAM J. Numer. Analysis, 20:187-209 (1983).

T. E. Coleman and J. J. Moré, Software for Estimating Sparse Jacobian Matrices, ACM
Transact. Math. Software, 10:329-345 (1984).

T. F. Coleman and J.-Y. Cai, The Cyclic Coloring Problem and Estimation of Sparse Hessian
Matrices, SIAM J. Appl. Math., 7:221-235 (1986).

T. F. Coleman and J. J. Moré, Estimation of Sparse Hessian Matrices and Graph Coloring
Problems, Math. Program., 28:243-270 (1984).

M. J. D. Powell and Ph. L. Toint, On the Estimation of Sparse Hessian Matrices, SIAM J.
Numer. Analysis, 16:1060-1074 (1979).

T. F. Coleman and P. E. Plassmann, Solution of Nonlinear Least-Squares Problems on a Mul-
tiprocessor. In: Parallel Computing 1988, Shell Conference Proceedings (G. A. van Zee and
J. G. G. van de Vorst, eds.), Springer-Verlag, New York, 1989, p. 384.

T. F. Coleman and P. E. Plassmann, A Parallel Nonlinear Least-Squares Solver: Theoretical
Analysis and Numerical Results, SIAM J. Sci. Stat. Computing.

P E. Plassmann, Sparse Jacobian Estimation and Factorization on a Multiprocessor. In:
Large-Scale Numerical Optimization (T. F. Coleman and Y. Li, eds.), SIAM, New York,
1990, pp. 152-179.

A. Griewank, The Chain Rule Revisited in Scientific Computing, Technical Report MCS-
P227-0491, Argonne National Laboratory, 1991.

A. R. Conn, N. 1. M. Gould, and Ph. L. Toint, An Introduction to the Structure of Large
Scale Nonlinear Optimization Problems and the Lancelot Project. In: Computing Methods in
Applied Sciences and Engineering, SIAM, New York, 1990, pp. 42-54.

A. Griewank and Ph. L. Toint, On the Unconstrained Optimization of Partially Separable
Functions. In: Nonlinear Optimization 1981 (M. J. D. Powell, ed.), Academic Press, New
York, 1982, pp. 301-312.

A. Griewank and Ph. L. Toint, Partitioned Variable Metric Updates for Large Structured Op-
timization Problems, Numerische Mathematik, 39:119—137 (1982).

A. Griewank and Ph. L. Toint, On the Existence of Convex Decompositions of Partially Sep-
arable Functions, Math. Program., 28:25-50 (1984).

I. S. Duff and J. K. Reid, The Multifrontal Solution of Indefinite Sparse Symmetric Linear
Equations, ACM Transact. Math. Software, 9:302-325 (1983).

A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Global Convergence of a Class of Trust Re-
gion Algorithms for Optimization with Simple Bounds, SIAM J. Numer. Analysis, 25:433—
460 (1988).

A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Testing a Class of Methods for Solving Min-
imization Problems with Simple Bounds on the Variables, Math. Comput., 50:399-430
(1988).

H. Khalfan, R. H. Byrd, and R. B. Schnabel, A Theoretical and Experimental Study of the
Symmetric Rank One Update, Technical Report CU-CS-489-90, Dept. of Computer Science,
University of Colorado, 1990.

A. Buckley and A. LeNir, QN-Like Variable Storage Conjugate Gradients, Math. Program.,
27:155-175 (1983).

A. Buckley and A. LeNir, BBVSCG—A Variable Storage Algorithm for Function Minimi-
zation, ACM Transact. Math. Software, 11(2):103-119 (1985).

R. Fletcher and C. M. Reeves, Function Minimization by Conjugate Gradients, Computer J.,
6:163-168 (1964).

P E. Gill and W. Murray, Conjugate-Gradient Methods for Large-Scale Nonlinear
Optimization, Technical Report SOL79-15, Dept. Operations Research, Stanford University,
1979.

E. Polak and G. Ribiere, Note sur la convergence de methodes de directions conjugées, Rev.
Francaise Informat. Recherche Operationelle, 16:35-43 (1960).

192

63.

65.

66.

67.

68.

69.

70.

71.
72.
73.
74.
75.
76.

77.
78.

79.
80.
81.
82.

83.

85.

Large-Scale Numerical Optimization

M. J. D. Powell, Nonconvex Minimization Calculations and the Conjugate Gradient Method.

In: Numerical Analysis Proceedings, (D. F. Griffiths, ed.), Springer Verlag, New York,

1984.

D. E Shanno, Conjugate-Gradient Methods with Inexact Searches, Math. Oper. Res. , 3:244—

256 (1978).

D. E Shanno and K. H. Phua, Remark on Algorithm 500: Minimization of Unconstrained

Multivariate Functions, ACM Transact. Math. Software, 6:618-622 (1980).

J. Nocedal, The Performance of Several Algorithms for Large Scale Unconstrained Optimi-

zation. In: Large-Scale Numerical Optimization, (T. F. Coleman and Y. Li, eds.), SIAM,

New York, 1990, pp. 138-151.

R. Fletcher, Low Storage Methods for Unconstrained Optimization, Technical Report NA/

117, University of Dundee, 1990.

D. C. Liu and J. Nocedal, On the Limited Memory BFGS Method for Large Scale Optimi-

zation, Technical Report, Dept. Electrical Engineering and Computer Science, Northwestern

University, 1988.

J. Nocedal, Updating Quasi-Newton Matrices with Limited Storage, Math. Comput.,

35:773-782 (1980).

S. G. Nash and J. Nocedal, A Numerical Study of the Limited Memory BFGS Method and
the Truncated Newton Method for Large Scale Optimization, SIAM J. Optimization, 1:358—
372 (1991).

B. A. Murtaugh and M. A. Saunders, MINOS/Augmented User’s Guide, Technical Report
SOL-80-14, Stanford University, 1987.

S. G. Nash, Preconditioning of Truncated-Newton Methods, SIAM J. Sci. Stat. Computing,
6:599-616 (1985).

T. Steihaug, The Conjugate Gradient Methods and Trust Regions in Large Scale Optimiza-
tion, SIAM J. Numer. Analysis, 20:626—637 (1983).

T. F. Coleman and A. Pothen, The Null Space Problem I: Complexity, SIAM J. Algebraic and
Discrete Methods, 7:527-537 (1987).

T. F. Coleman and A. Pothen, The Null Space Problem II: Algorithms, SIAM J. Algebraic
and Discrete Methods, 8:544-563 (1987).

J. R. Gilbert and M. T. Heath, Computing a Sparse Basis for the Nullspace, SIAM J. Alge-
braic and Discrete Methods, 8:446-459 (1987).

V. Chvital, Linear Programming, W. H. Freeman and Company, San Francisco, 1980.

A. R. Conn, Linear Programming Via a Non-differentiable Penalty Function, SIAM J. Nu-
mer. Analysis, 13:224-241 (1988).

J. J. Moré and G. Toraldo, Algorithms for Bound Constrained Quadratic Programming Prob-
lems, Numerische Mathematik, 55:377—-400 (1989).

R. S. Dembo and U. Tulowitzki, On the Minimization of Quadratic Functions Subject to Box
Constraints, Technical Report B 71, Yale University, 1983.

D. P. Bertsekas, Projected Newton Methods for Optimization Problems with Simple Con-
straints, SIAM J. Control and Optimization, 20(2):221-246 (1982).

T. F. Coleman and L. Hulbert, A Direct Active Set Algorithm for Large Sparse Quadratic
Programs with Simple Bounds, Math. Program., 45:373—-406 (1989).

C.-G. Han, P. M. Pardalos, and Y. Ye, Computational Aspects of an Interior Point Algorithm
for Quadratic Programming Problems with Box Constraints. In: Large-Scale Numerical Op-
timization, (T. E. Coleman and Y. Li, eds.), SIAM, New York, 1990, pp. 92-112.

T. E Coleman and L. Hulbert, A Globally and Superlinearly Convergent Algorithm for Con-
vex Quadratic Programs with Simple Bounds, Technical Report TR 90-1092, Computer Sci-
ence Dept., Cornell University, February 1990 (to appear in SIAM J. Optimization).

Y. Ye, On the Interior Algorithms for Nonconvex Quadratic Programming, Technical Report,
Integrated Systems Inc., 1988.

Large-Scale Numerical Optimization 193

86.

87.

88.

89.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

J. J. Judice and F. M. Pires, Direct Methods for Convex Quadratic Programs Subject to Box
Constraints, Departamento de matemética, Universidade de Coimbra, 3000 Coimbra, Por-
tugal, 1989.

P. Lotstedt, Solving the Minimal Least Squares Problem Subject to Bounds on the Vari-
ables, BIT, 24:206-224 (1984).

E. K. Yang and J. W. Tolle, A Class of Methods for Solving Large Convex Quadratic Pro-
grams Subject to Box Constraints, Technical Report, Dept. of Operations Research, Uni-
versity of North Carolina, Chapel Hill, NC, 1988.

I. Adler, M. G. C. Resende, G. Veiga, and N. Karmarkar, An Implementation of Kar-
markar’s Algorithm for Linear Programming, Math. Program., 44 (1989).

E. R. Barnes, A Variation on Karmarkar’s Algorithm for Solving Linear Programming
Problems, Math. Program., 36:174—182 (1986).

T. F. Coleman and Y. Li, A Quadratically-Convergent Algorithm for the Linear Program-
ming Problem with Lower and Upper Bounds. In: Large-Scale Numerical Optimization,
(T. F. Coleman and Y. Li, eds.), SIAM, New York, 1990, pp. 49-47. Proceedings of the
Mathematical Sciences Institute workshop, October 1989, Cornell University.

D. M. Gay, A Variant of Karmarkar’s Linear Programming Algorithm for Problems in
Standard Form, Math. Program., 37:81-90 (1987).

P E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright, On Projected
Newton Barrier Methods for Linear Programming and an Equivalence to Karmarkar’s Pro-
jective Method, Math. Program., 36:183-209 (1986).

N. Karmarkar, A New Polynomial-Time Algorithm for Linear Programming, Combinator-
ica, 4:373-395 (1984).

I. J. Lustig, R. E. Marsten, and D. F. Shanno, The Primal-Dual Interior Point Method on
the Cray Supercomputer. In: Large-Scale Numerical Optimization, (T. F. Coleman and Y.
Li, eds.), SIAM, New York, 1990, pp. 70-80.

K. A. McShane, C. L. Monma, and D. E Shanno, An Implementation of a Primal-
Dual Interior Point Method for Linear Programming, ORSA J. Computing, 1:70-83
(1989).

M. J. Todd, Recent Developments and New Directions in Linear Programming. In: Math-
ematical Programming: Recent Developments and Applications, (M. Iri and K. Tanabe,
eds.), Kluwer Academic Publishers, Dordrecht, 1989, pp. 109-157.

M. J. Todd, Exploiting Special Structure in Karmarkar’s Linear Programming Algorithm,
Math. Program., 41:97-113 (1988).

R. J. Vanderbei, M. S. Meketon, and B. A. Freedman, A Modification of Karmarkar’s Lin-
ear Programming Algorithm, Algorithmica, 1:395-407 (1986).

Y. Ye, An O(n°L) Potential Reduction Algorithm for Linear Programming, Marh. Program.,
50:239-258 (1991).

T. E Coleman and Y. Li, A Global and Quadratic Affine Scaling Method for (Augmented)
Linear /, Problems. In: Proc. 1989 Dundee Conference on Numerical Analysis, 1989.

T. F. Coleman and Y. Li, A Global and Quadratic Affine Scaling Method for Linear /, Prob-
lems, Technical Report 89-1026, Computer Science Dept., Cornell University, 1989 (to ap-
pear in Math. Program.).

T. F. Coleman and Y. Li, A Global and Quadratically-Convergent Method for Linear /
Problems, Technical Report 90-1121, SIAM J, Numer. Analy., 29: 1166-1186 (1992).

Y. Li, A Globally Convergent Method for /, Problems, Technical Report 91-1212, Computer
Science Dept., Cornell University, 1991.

S. G. Kratzer, Massively Parallel Sparse-Matrix Computations, Technical Report, SRC-TR-
90-008, Supercomputing Research Center, 1990.

U. Oreborn, A Direct Method for Sparse Nonnegative Least Squares Problems. Ph.D. the-
sis, Dept. of Mathematics, Linkoping University, Linkoping, Sweden, 1986.

194

107.

108.

109.

110.

1.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

Large-Scale Numerical Optimization

P. E. Plassmann, The Parallel Solution of Nonlinear Least-Squares Problems, Ph.D. thesis,

Center for Applied Mathematics, Cornell University, 1990.

S. S. Nielsen and S. A. Zenios, A Massively Parallel Algorithm for Nonlinear Stochastic

Network Problems, Technical Report 90-09-08, Dept. of Decision Sciences, Wharton

School, University of Pennsylvania, 1990.

I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott, and K. Turner, The Factorization of
Sparse Symmetric Indefinite Matrices, IMA J. Numer. Analy.

P E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, A Schur-Complement Method

for Sparse Quadratic Programming. In: Reliable Numerical Computing (M. G. Cox and S. J.

Hammarling, eds.), Oxford University Press, New York, 1992.

N. I. M. Gould, An Algorithm for Large Scale Quadratic Programming, Technical Report

89-036, Computer Science and Systems Division, Harwell Laboratory, 1989.

T. E Coleman, On Characterizations of Superlinear Convergence for Constrained Optimi-

zation. In: (E. L. Allgower and K. George, eds.), Computational Solution of Nonlinear Sys-

tems of Equations, Volume 26 Lectures in Applied Mathematics, American Mathematical

Society, New York, 1990, pp. 113-134.

J. Stoer and R. A. Tapia, On the Characterization of Q-Superlinear Convergence of Quasi-
Newton Methods for constrained Optimization, Technical Report 84-2, Dept. of Mathemat-
ical Sciences, Rice University, July 1984 (revised October 1986).

R. Fontecilla, T. Steihaug, and R. A. Tapia, A Convergence Theory for a Class of Quasi-
Newton Methods for Constrained Optimization, SIAM J. Numer. Analysis, 24:1133-1151

(1987).

J. Goodman, Newton’s Method for Constrained Optimization, Math. Program., 33:162-171

(1985).

J. Nocedal and M. Overton, Projected Hessian Updating Algorithms for Nonlinearly Con-
strained Optimization, SIAM J. Numer. Analysis, 22:821-850 (1985).

R. A. Tapia, A Stable Approach to Newton’s Method for Optimization Problems with
Equality Constraints, J. Optimization Theory Appl., 14:453-476 (1974).

P E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, A Schur Complement Method
for Sparse Quadratic Programming. In: Reliable Numerical Computation, Clarendon Press,
Oxford, 1990, pp. 113-138.

T. F Coleman and C. Hempel, Computing a Trust Region Step for a Penalty Function, SIAM
J. Sci. Stat. Computing, 11:180-201 (1990).

N. I. M. Gould, On the Accurate Determination of Search Directions for Simple Differen-
tiable Penalty Functions, I.M.A. J. Numer. Analysis, 6:357-372 (1986).

A. Griewank, On Automatic Differentiation. In: Mathematical Programming: Recent De-
velopments and Applications, (M. Iri and K. Tanabe, eds.), Kluwer Academic Publishers,
Dordrecht, 1989, pp. 83-108.

A. Griewank, Direct Calculation of Newton Steps Without Accumulating Jacobians. In:
Large-Scale Numerical Optimization (T. F. Coleman and Y. Li, eds.), SIAM, New York,
1990, pp. 115-137.

A. Griewank, D. Juedes, and J. Srinivasan, ADOL-C, A Package for the Automatic Dif-
ferentiation of Algorithms Written in C/C**, Technical Report MCSA-180-1190, Argonne
National Laboratory, 1990.

M. Iri and K. Kubota, Methods of Fast Automatic Differentiation and Applications, Tech-
nical Report, Mathematical Engineering and Instrumentation Physics, University of Tokyo,
1988.

M. Iri, T. Tsuchiya, and M. Hoshi, Automatic Computation of Partial Derivatives and
Rounding Error Estimates with Applications to Large-Scale Systems of Nonlinear Equa-
tions, J. Comput. Appl. Math., 24:365-392 (1988).

K. V. Kim, J. Nesterov, V. A. Skokov, and B. V. Cherkasskii, An Efficient Algorithm for
Computing Derivatives and Extremal Problems, MATEKON, 21:49-67 (1985).

Large-Scale Numerical Optimization 195

127. G. L. Miller, V. Ramachandran, and E. Kaltofen, Efficient Parallel Evaluation of Straight-
Line Code and Arithmetic Circuits, SIAM J. Computing, 17:687-695 (1988).

128. E. D. Chajakis and S. A. Zenios, Synchronous and Asynchronous Implementations of Re-
laxation Algorithms for Nonlinear Network Optimization, Technical Report 89-10-07, De-
cision Sciences Dept., University of Pennsylvania, 1990.

129. S. A. Zenios and Y. Censor, Massively Parallel Row-Action Algorithms for Some Nonlinear
Transportational Problems, Technical Report 89-09-10, Decision Sciences Dept., University
of Pennsylvania, 1989.

130. S. A. Zenios, R. Qi, and E. D. Chajakis, A Comparative Study of Parallel Dual Coordinate
Ascent Implementations for Nonlinear Network Optimization. In: Large-Scale Numerical
Optimization, (T. F. Coleman and Y. Li, eds.), SIAM, New York, 1990, pp. 238-255.

131. R. Byrd, R. B. Schnabel, and G. Shultz, Parallel Quasi-Newton Methods for Unconstrained
Optimization, Technical Report, Dept. of Computer Science, University of Colorado, 1988.

132. T. F Coleman and G. Li, Solving Systems of Nonlinear Equations on a Message-Passing
Multiprocessor, SIAM J. Sci. Stat. Computing, 11:1116-1135 (1990).

133. G.Liand T. E Coleman, A New Method for Solving Triangular Systems on a Distributed
Memory Message-Passing Multiprocessor, SIAM J. Sci. Stat. Computing, 10:382-396
(1989).

134. J. R. Gilbert, Predicting Structure in Sparse Matrix Computations, Technical Report CS-
86-750, Cornell University, 1986.

BASIC READINGS FOR FURTHER STUDY

Bertsekas, D. P. and J. N. Tsitsiklis, Parallel and Distributed Computation, Prentice-Hall, Engle-
wood Cliffs, NJ, 1989.

Coleman, T. F,, Large Sparse Numerical Optimization, Volume 165, Lecture Notes in Computer
Science, Springer-Verlag, New York, 1984.

Coleman, T. E and Y. Li, Large-Scale Numerical Optimization, SIAM, New York, 1990.

Dennis, J. E. and J. J. Moré, Quasi-Newton Methods, Motivation and Theory, SIAM Rev., 19:46—
89 (1977).

Dennis, J. E. and R. B. Schnabel, Numerical Methods Jor Unconstrained Optimization, Prentice-
Hall, Englewood Cliffs, NJ, 1983.

Fiacco, A. V. and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimi-
zation Techniques, John Wiley and Sons, New York, 1968.

Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New York,
1981.

McCormick, G. P, Nonlinear Programming. Theory, Algorithms, and Applications, John Wiley
and Sons, New York, 1983.

Nembhauser, G. L., A. H. G. Rinnooy Kan, and M. J. Todd, Optimization, Vol. 1, Handbooks in
Operations Research and Management Science, North-Holland, Amsterdam, 1989.

Zenios, S. A., Parallel Optimization: Current Status and an Annotated Bibliography, ORSA J.
Computing, 1:20-43 (1989).

THOMAS F. COLEMAN

